

SES

DATABASE DESIGN

Relational Database Systems and the Life Cycle

DATABASE DESIGN

• Relational Database Systems and the Life Cycle

 General definition of Database Systems

 Information system life cycle

 How to design Database System?

RELATIONAL DATABASE SYSTEMS AND
THE LIFE CYCLE

• General definition of Database Systems

• Information system life cycle

• How to design Database System?

 A database system is an overall
collection of different database
software components and
databases containing the following
parts:

 Database application programs

 Client components

 Database server(s)

 Databases

RELATIONAL DATABASE SYSTEMS AND
THE LIFE CYCLE

• General definition of Database Systems

• Information system life cycle

• How to design Database System?

• Relational Database

RELATIONAL DATABASE SYSTEMS AND
THE LIFE CYCLE

• General definition of Database Systems

• Information system life cycle

• How to design Database System?

Feasibility analysis

Requirement collection and analysis

Design

Validation and acceptance testing

RELATIONAL DATABASE SYSTEMS AND
THE LIFE CYCLE

• General definition of Database Systems

• Information system life cycle

• How to design Database System?

 Information system

Information System includes all
resources involved in the collection,
management, use and
dissemination of the information
resources of the organization

INFORMATION SYSTEM LIFE CYCLE

Feasibility analysis

 Requirement collection and analysis

 Design

 Validation and acceptance testing

• Analyze potential application areas

• Identify the cost for information gathering
and dissemination

• Determine the complexity of data and
process

• Perform cost-benefit studies

• Set up priorities among applications

INFORMATION SYSTEM LIFE CYCLE

 Feasibility analysis

Requirement collection and analysis

 Design

 Validation and acceptance testing

• Interact with potential users and
user groups to identify problems
and needs

• Identify inter application
dependencies, communication
and reporting procedures.

INFORMATION SYSTEM LIFE CYCLE

 Feasibility analysis

 Requirement collection and analysis

Design

 Validation and acceptance testing

• Design database system

• Design application systems (programs)

INFORMATION SYSTEM LIFE CYCLE

 Feasibility analysis

 Requirement collection and analysis

 Design

Validation and acceptance testing

DATABASE DESIGN

How to design Database System?

End of 1st Session

DATABASE DESIGN

Database Management Principles

DATABASE MANAGEMENT PRINCIPLES

Database management systems (DBMS) is a collection
of programs that allows users to create and maintain a
database, e.g.,

– Construction

– Manipulation

– Sharing

– Protection

– Maintenance

Database

Management

Operating

System

Database

Management

System

Application

Programs

Databases

Data

Dictionary

DATABASE MANAGEMENT PRINCIPLES

– Construction
– Manipulation

– Sharing

– Protection

– Maintenance

Which database is appropriate for the
application?

Does your database need 24x7 availability?

Is the database mission critical, and no data loss
can be tolerated?

Is the database large? (backup recovery
methods)

What data types do you need? (binary, large
objects?)

DATABASE MANAGEMENT PRINCIPLES

– Construction

– Manipulation
– Sharing

– Protection

– Maintenance

• Inserting Data

• Retrieving Existing Data

• Updating Data

• Deleting Data

DATABASE MANAGEMENT PRINCIPLES

– Construction

– Manipulation

– Sharing

Support for Multiple Users

Multiple Ways of Interfering to the System

– Protection

– Maintenance

Support for Multiple Users

A true RDBMS allows effective
sharing of data. That is, it ensures
that several users can concurrently
access the data in the database
without affecting the speed of the
data access.

DATABASE MANAGEMENT PRINCIPLES

– Construction

– Manipulation

– Sharing

Support for Multiple Users

Multiple Ways of Interfering to the System

– Protection

– Maintenance

Multiple Ways of Interfering to the
System

For example we can access to
MySQL Database server through
mysqldump, mysqladmin and
mysqlshow etc.

DATABASE MANAGEMENT PRINCIPLES

– Construction

– Manipulation

– Sharing

– Protection
– Maintenance

• Data entry

• Passwords

• Viruses and worms

• Backups

• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

• Data entry
• Passwords

• Viruses and worms

• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

PROTECTION

• Both Frontend (Client-side) and Backend
(Server-side) validation should be made

PROTECTION

• Data entry
• Passwords

• Viruses and worms

• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

• Both Frontend (Client-side) and Backend (Server-
side) validation should be made

• Data entry
• Passwords

• Viruses and worms

• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

PROTECTION

• Both Frontend (Client-side) and Backend
(Server-side) validation should be made

• Data entry
• Passwords

• Viruses and worms

• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

PROTECTION

• Both Frontend (Client-side) and Backend
(Server-side) validation should be made

PROTECTION

• Data entry

• Passwords
• Viruses and worms

• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

PROTECTION

• Data entry

• Passwords
• Viruses and worms

• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

PROTECTION

• Data entry

• Passwords

• Viruses and worms
• System redundancy

• Physical protection

• Private network/wiring

• Encryption

• Training

DATABASE MANAGEMENT PRINCIPLES

– Construction

– Manipulation

– Sharing

– Protection

– Maintenance

What is Backup and Recovery?

• In general, backup and recovery refers to
the various strategies and procedures
involved in protecting your database
against data loss and reconstructing the
database after any kind of data loss.

• Physical Backups

• Logical Backups

End of 2nd Session

DATABASE DESIGN

What Makes a Good Database?

WHAT MAKES A GOOD DATABASE?

• Storage Needs Met

• Data is Available

• Data Protected

• Data is Accurate

• Acceptable Performance

WHAT MAKES A GOOD DATABASE?

• Storage Needs Met

• Data Is Available

• Data Protected

• Data Is Accurate

• Acceptable Performance

• Have all storage needs been met for the
database?

• Has all data been stored effectively?

• Is the hardware adequate for storage needs?

• Does the database software meet the
storage needs?

• How easy is it to access offline data storage?

WHAT MAKES A GOOD DATABASE?

• Storage Needs Met

• Data is Available

• Data Protected

• Data Is Accurate

• Acceptable Performance

Data availability is also related to the user’s expected and

perceived performance of the data- base. Consider this: A user

starts an application and performs some function that requests

data. Depending on the nature of the request, it may take

several minutes or seconds for data to become available, or it

might appear instantly on the screen. In the production

environment, perception is reality, and if a user feels an

application or database is slow, it will create the perception of

poor performance.

WHAT MAKES A GOOD DATABASE?

• Does security exist in the database?

• Storage Needs Met

• Data Is Available

• Data Protected

• Data Is Accurate

• Acceptable Performance

• Redundant Data Is Minimized

• Is the data protected from outside users?

• Is the data protected from internal users?

• How easy is it for unauthorized users to access the

data?

• How easy is it to grant and revoke data access to

various groups of users?

WHAT MAKES A GOOD DATABASE?

• Storage Needs Met

• Data Is Available

• Data Protected

• Data is Accurate

• Acceptable Performance

• Has referential integrity been applied (primary

key and foreign key constraints)?

• What other constraints have been established

to check the uniqueness or validity of data?

• Are data relationships easily maintained within

the database?

• How easy is it for the end user to enter invalid

data into the database?

WHAT MAKES A GOOD DATABASE?

• Storage Needs Met

• Data Is Available

• Data Protected

• Data Is Accurate

• Acceptable Performance

• What is the expected response time for

transactions and small queries?

• How does the database perform overall

according to the end user?

• How does the database perform during high

peak times of transactional activity?

• How does the database perform during batch

operations, such as massive data loads and

queries against large amounts of data?

DATABASE DESIGN

Statistical Database requirements analysis

STATISTICAL DATABASE REQUIREMENTS ANALYSIS

A statistical database management system (SDBMS) is a database

management system that can model, store and manipulate data in a manner

well suited to the needs of users who want to perform statistical analyses on

the data. Statistical databases have some special characteristics and

requirements that are not supported by existing commercial database

management systems. For example, while basic aggregation operations like

SUM and AVG are part of SQL

STATISTICAL DATABASE REQUIREMENTS ANALYSIS

Objectives:

• Appreciate the Features of Statistical database system (DBMS)

• Define Statistical database system.

• Use High-Level Concept of Statistics data in policies formulation.

• State some major concepts of Statistical database Models.

• Design the major components of Statistical database and Modeling.

STATISTICAL DATABASE REQUIREMENTS ANALYSIS

The design of a Statistical Database (Micro, Macro and Metadata Modeling)

• Micro data as primary or basis data on individuals, objects or events representing sampled, census or

collected data.

• Macro data as grouped or aggregated data (summarized data) which are cross-classified by a set of

categorical attributes (variables). The summary attribute represents counts (frequencies), means, indices or

other statistics characterizing a set (population) of individuals, objects or events.

• Metadata describing the micro- and macro data on the semantic, structural, statistical and physical level

in such a way that they can be stored transformed retrieved and transmitted in a reasonable way. It

covers the whole data life cycle, i.e. the data collecting from the data source, the data storing, the data

processing and retrieval, and the data disseminating within the electronic data interchange (EDI)

STATISTICAL DATABASE REQUIREMENTS ANALYSIS

Microdata
• List name, age, sex

• From labourcensusemployees

• Where industry = 'whole industry' and year = 1980

Macrodata
• List number (employees), average (employees.income)

• From labourcensus

• Where industry - 'whole industry' and year - 1980

• Cross-classified by age^group and sex

Metadata

• Household All the people belong to a household who live there together and have a joint budget

• Each person who has an own

• Budget forms her own household,

• Summary-attribute (employees)

• Income categoryattribute (employees)

• Domain (industry)

DATABASE DESIGN

Statistical Data Uploading

STATISTICAL DATA UPLOADING

SESRIC has built a relational database to store statistical data

collected from various sources.

STATISTICAL DATA UPLOADING

• 18 categories
• 266 socio-economic variables
• 57 OIC member countries

End of 3rd Session

XML

What is XML?

What made XML necessary?

What does XML provide?

XML with favorite programming language

XML Data Structure for SMC

WHAT IS XML?

Extensible Markup Language:

An activity of the World Wide Web Consortium (W3C) organized and led by Sun

Microsystems

Objective:

move the Web to its next stage of evolution by adapting existing ISO standards for

markup, linking, and formatting

WHAT MADE XML NECESSARY?

<p>Mrs. Mary McGoon

 1401 Main Street

Anytown, NC 34829</p>

<address>
<name>

<title>Mrs.</title>
<first-name> Mary </first-name>
<last-name> McGoon </last-name>

</name>
<street> 1401 Main Street </street>
<city>Anytown</city>
<state>NC</state>
<postal-code> 34829 </postal-code>

</address>

WHAT MADE XML NECESSARY?

New data-centric Web applications

• Data exchange

• Share Data

• Store data

WHAT DOES XML PROVIDE?

XML provides key features needed for a new generation of Web

applications:

• Platform-independent

• Language-independent

• Media-independent

<bibliography>
<book>

<title> Foundations </title>
<author> Abiteboul </author>
<author> Hull </author>
<author> Vianu </author>
<publisher> Addison Wesley </publisher>
<year> 1995 </year>

</book>
</bibliography>

XML WITH FAVORITE PROGRAMMING LANGUAGE

We can use XML with any kind of server-side technology, including PHP

pages, JavaServer Pages (JSPs), Java servlets, Ruby on Rails, and

Microsoft ASP pages etc.

XML WITH FAVORITE PROGRAMMING LANGUAGE

PHP Perl

ASP.NET

Ruby on Rails

XML, FLEX, HTTPSERVICE, PHP AND SQL

We can use the following components to manage and insert data

• Flex HTTPService

• PHP and

• SQL database

XML, FLEX, HTTPSERVICE, PHP AND SQL

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:m.x=''http:I /www .adobe.com/2006/m.xml'' l.ayout=''absolute''

xmlns="*'" creationCormplete="send_data()">

<mx:Script>

<![CDATA[

privat:e· function send_dat:a(): void {

userRequest:.send();

}

]] >
</mx.:Script>

<mx:Form x="22" y="lO" wi.dth="493">

<mx:HBox>

<mx:Label text=''Username••• />

<mx:Textinput id="username"/>

</mx:HBox>

<mx:HBox>

<mx:La.bel text="Email Address"/>

<mx:Textinput id="emailaddress"/>

</mx:HBox>

<mx:Button la.bel="Submit" click="send_data()"/>

</mx:Form>

<n1x:Dat:aGrid id="dgUserRequest:" x="22" y="128" dat:aProvider="{userRequest:.last:Result:.users.user}">
<mx:columns>

<mx:DataGridColum:n headerText="User ID" dataField="userid"/>

<mx:DataGridColumn .headerText="User Name" dataField="username"/>

</mx:columns>

</mx:DataGrid>

<mx:Textinput x="22" y="292" id="selectedemailaddress"

text="{dgUserRequest.selecteditem.emailaddress}"/>

<n1x: HTTPService id="userReque·st:" url="http: IIlocaI host:/ rnyproj/ request:_post:2. php" useProxy="faI se·"

rnet:hod="POST'>

<ll'lx: reque·st: Xllillns="">

<usernarne>{usernanle.t:ext:}</usernarne>

<enlailaddress>{ellilailaddress.t:ext:}</ernailaddress>

</ll'lx:request:>

<I llilX: HTTPService>
</mx:Application>

XML, FLEX, HTTPSERVICE, PHP AND SQL

Data Communication between PHP and Flex

XML DATA STRUCTURE FOR SMC

<dataset>

<item>

<Who>Turkey</Who>

<When>1980</When>

<DataX>32.94</DataX>

<DataY>18394.00</DataY>

<DataR>44105216.00</DataR>

<Estimated>0</Estimated>

</item>

<item>

<Who>Turkey</Who>

<When>1981</When>

<DataX>33.11</DataX>

<DataY>18472.00</DataY>

<DataR>45130008.00</DataR>

<Estimated>0</Estimated>

</item>

…

</dataset>

OF THE

END

I DAY

VISUALIZATION TOOLS DEVELOPMENT

• Visualization Tools Essentials

• Flex in Visual Programming (Flex and PHP)

• Time Series Statistical Data Visualization

• SESRIC SMC Source Code Analysis

VISUALIZATION TOOLS ESSENTIALS

The Trend Toward of Visualization-based Data Discovery Tools

• Big data is creating unprecedented opportunities for businesses to achieve deeper, faster

insights that can strengthen decision making, improve the customer experience, and

accelerate the pace of innovation. But today, most big data yields neither meaning nor

value. Businesses are so overwhelmed by the amount and variety of data cascading into

and through their operations that they struggle just to store the data—much less analyze,

interpret, and present it in meaningful ways.

VISUALIZATION TOOLS ESSENTIALS

The Struggle to Make Meaning Out of Big Data

Key Results from IT Manager Survey

• 33% of companies surveyed are working with very large amounts of data (500 TB or

more)

• 84% of IT managers are analyzing unstructured data.

• 44% of those who are not analyzing unstructured data expect to do so in the next 12

to 18 months

• By 2015, IT managers expect that 63% of all analytics will be done in real time

• Of seven possibilities, IT managers indicated that they would find the most value in

receiving help deploying cost-effective data visualization methods

VISUALIZATION TOOLS ESSENTIALS

Key Features of Visualization-based Data Discovery Tools

• Enable real-time data analysis

• Support real-time creation of dynamic, interactive presentations and reports

• Allow end users to interact with data, often on mobile devices

• Hold data in-memory, where it is accessible to multiple users

• Allow users to share and collaborate securely

VISUALIZATION TOOLS ESSENTIALS

Protecting Data Quality

Data security and governance have always been part of BI, but big data introduces

added legal, ethical, and regulatory issues. Visualization based data discovery tools

further those concerns, particularly in the area of data quality.

The risk to data quality stems from one of the great benefits of visualization-based

data discovery tools: their ease of use. The tools facilitate self-service BI, enabling

more users to perform advanced analyses.

FLEX IN VISUAL PROGRAMMING

What does it do?

Flex is a powerful, open source application framework that allows you to easily build

mobile applications for iOS, Android™, and BlackBerry® Tablet OS devices, as well as

traditional applications for browser and desktop using the same programming model,

tool, and codebase.

FLEX IN VISUAL PROGRAMMING

Enterprise-class programming model

Use constructs like strong typing, inheritance, and interfaces to program more

efficiently. Extensive mobile and traditional components help speed development.

Flex applications can access device capabilities such as GPS, accelerometer,

camera, and local database. Cross-platform and native experience Create

applications that run consistently across Android, BlackBerry Tablet OS, and iOS

devices, as well as inside the browser and on traditional desktop computers. Although

cross platform, with Flex you get an uncompromised native experience on each

platform.

FLEX IN VISUAL PROGRAMMING

End-to-end tooling

Build Flex applications more easily using Adobe Flash Builder, PowerFlasher FDT, Flash

Develop or JetBrains IntelliJ IDEA. Productivity features in most IDEs include on-device

debugging and mobile simulators for testing across screen sizes and resolutions. You

can even use our command-line tooling with your favorite text editor!

FLEX IN VISUAL PROGRAMMING

Server integration

Integrate with all major back ends including Java™, Spring, Hibernate, PHP, Ruby,

.NET, Adobe ColdFusion®, and SAP using industry standards such as REST, SOAP, JSON,

JMS, and AMF.

FLEX IN VISUAL PROGRAMMING

How it works?

Apache Flex is comprised of a few different components. One component is the compiler which

combines MXML (layout) documents with Action Script files to output a SWF application. SWF file

as a stand-alone application to be presented by the Adobe Flash Player in the browser, OR you

can compile it with Adobe AIR to make native applications on Windows, MacOSX, Android, iOS,

or BlackBerry platforms.

FLEX IN VISUAL PROGRAMMING

Flex in Visual Programming

• Unlike a set of HTML templates created using JSPs and servlets, ASP, PHP, or CFML,

Flex separates client code from server code. The application user interface is

compiled into a binary SWF file that is sent to the client.

• When the application makes a request to a data service, the SWF file is not

recompiled and no page refresh is required. The remote service returns only data.

Flex binds the returned data to user interface components in the client application.

• For example, in Flex, when a user clicks a Button control in an application, client-side

code calls a web service. The result data from the web service is returned into the

binary SWF file without a page refresh. Thus, the result data is available to use as

dynamic content in the application.

TIME SERIES STATISTICAL DATA VISUALIZATION

Example will be given from BASEIND Time Series

SESRIC SMC MODULE SHARING

• Platform Independent

• Technology

• Customizable

SESRIC MC SOURCE CODE SHARING

General Overview of Codes and Object Oriented Classes:

SESRIC MC SOURCE CODE SHARING

<mx:BubbleChart id="bubbleChart"

showDa.taTips="true"

paddingRight="S"

paddingLeft="S"

maxRadius="25"

minRadius="5"

dataTipFunction="bubbleChart_dataTipFunc"

width="693"

height="442"

dataTipMode="single" mouseOut="hideTipData.(}"

baseline="2"

initialize="initBubbleChart();" itemClick:="ltemClicked(event);">

<mx:verticalAxis>

<mx:LinearAxis baseAtZero="true" labelFunction="linearAxis labelFunc" autoAdjust="true" />

</mx:verticalAxis>

<mx:horizontalAxis>

<mx:LinearAxis baseAtZero="true" labelFunction="linearAxis labelFunc" autoAdjust="true" />

</mx:horizontalAxis>

<mx:radiusAxis>

<mx:LinearAxis />

</mx:radiusAxis>

<mx:series>

<components:CustomBubbleSeries id="bubbleSeries"

displayName="SERICl1C" fillFunction="myFillFunction"

xField="DataX"

yField="DataY"

radiusField="DataR" CountryName="Who">

</components:CustomBubbleSeries>

</mx:series>

</mx:BubbleChart>

SESRIC MC SOURCE CODE SHARING

<?xml version="l.O" encoding="utf-8"?>

<mx:Application xrolns:mx="http://www.adobe.com/2006/mxml." layout="absolute" height="608"

widtb="941" backgroundColor="white" creationComplete="dataRequest2.send();" initialize="initApp()" xmlns:components="components.< ">

<mx:Style>

Corr..bo3ox {

dropdownStyleName: myDropdownStyleNom;

}

. yDropdoSty:eNo {

borderColor: haloBlue;

borderThickness: 3;

fontWeight: normal;

}

.colorBubble {

color: #9933FF;

}

.corr..boStyle{

fontFamily:myPlai::1Fo::1t;

fontSize: 12pt;

font-weight:normal;

}

.sizelbl {

padding-left: 40px;

padding-top: 30px;

}

.si:der {

slide-duration:2000;

slide-easing-function:"Elastic.ease!nOut";

}

</mx:Style>

http://www.adobe.com/2006/mxml

SESRIC MC SOURCE CODE SHARING

var countryFlag:Striug = "";
var toolTipBubble:String = "";

toolTipBubble +·= "";

toolTipBubble +·= "";

toolTipBubbl.e += cSI.item.Wbo + " ("+ (yea.rSl.ider.value + Number(year) - 1).toString() + ")";
return toolTipBubble;

publ.ic function yindicatorChangeB(e:Event):void{

var Col.Ser:Col.umnSeries =

bar,Cbart.series[0]; var l.nAxis:LinearAxis =

new Linear.Axis();

var l.gAxis:LogAxis = new LogAxis();

lgAxis.l.abelFunction = logAxis_labelFunc;

if (yindicatorB.sel.ectedindex = 0){

if (vertic.al.ComboB.sel.ectedlndex = 1) {

lgAxis.maximum = l.inear.Axislofaximum;
lgAxis.minimum = l.inearAxisHinimum;
lgAxis.interval. = 10;

} el.se {

l.nAxis.maximum

lnAxis.minimum

}

l.inearAxisHaximum + Number(l.inearAxisHaximum/10);

l.inear.Axislofinimum Number(l.inear.Axislofinimum/25);

ColSer.yField = "DataX";

} else if (yindic.atorB.sel.ectedlndex

if (verticalComboB.sel.ectedindex

l.gAxis.maximum '= RAxisHaximum;

lgAxis.minimum = RAxisHinimum;
lgAxis.interval. = 10;

} el.se {

2){

1) {

lnAxis.maximum

lnAxis.minimum

}

RAxisHaximum +
Number(RAxisHaximum/10); RAxisl1inimum

 Number(RAxisl1inimum/25)

;

http://www.sesric.org/imgs/country_flags/B.jpg

ColSer.yField "DataR";

SESRIC MOTION CHART

THANK YOU

